Eutrophication in a tropical pond: Understanding the bacterioplankton and phytoplankton dynamics during a vibriosis outbreak using flow cytometric analyses
نویسندگان
چکیده
In tropical shrimp ponds, the increasing of feed input, concomitantly with the stocking shrimp biomass, induces an eutrophication of the ecosystem. Although difficult to maintain, its stability is required to guarantee the success of the culture. A 110-day period of phytoplankton and bacterioplankton stock and dynamics in an earthen pond (1.2 ha area, 1 m depth) was monitored using flow cytometry to provide baseline information on community characteristics and ecosystem instability. Seven autotrophic cell types were identified over the whole sampling period. Prokaryotic cells included Synechococcus sp., a group named UNK which presented an atypical new flow cytometric signature and picoeukaryotes (PEUK). Nanophytoplankton cells were represented by 4 groups: NAN1, NAN2, NAN3 and Cryptophytes. During the first part of the survey, picophytoplankton dominated the phytoplanktonic assemblage. The mean abundance of total cells (up to 8 × 10 cells mL) was among the highest recorded in marine and brackish waters. Bacterial abundance and production ranged from 0.8 to 5.1 × 10 cells mL and from 30 to 110 μg C L h. A shift from pico to nanophytoplankton abundance was observed for a few days from d 96. During this period, heterotrophic bacteria production and abundance suddenly dropped, implying a change in the functioning of the microbial loop. This shift was concomitant with a significant shrimp mortality outbreak due to Vibrio penaeicida, the etiological agent of a disease known as Syndrome 93, which affects the shrimp industry in New Caledonia. This survey suggests that flow cytometric analysis could be used for the monitoring of aquaculture systems to improve our understanding of the complex phytoplankton and bacterial dynamics of these systems and its potential influence on disease development.
منابع مشابه
Dynamics of phytoplankton communities in eutrophying tropical shrimp ponds affected by vibriosis.
Tropical shrimp aquaculture systems in New Caledonia regularly face major crises resulting from outbreaks of Vibrio infections. Ponds are highly dynamic and challenging environments and display a wide range of trophic conditions. In farms affected by vibriosis, phytoplankton biomass and composition are highly variable. These conditions may promote the development of harmful algae increasing shr...
متن کاملSeasonality in molecular and cytometric diversity of marine bacterioplankton: the re-shuffling of bacterial taxa by vertical mixing.
The 'cytometric diversity' of phytoplankton communities has been studied based on single-cell properties, but the applicability of this method to characterize bacterioplankton has been unexplored. Here, we analysed seasonal changes in cytometric diversity of marine bacterioplankton along a decadal time-series at three coastal stations in the Southern Bay of Biscay. Shannon-Weaver diversity esti...
متن کاملStudy of geometric shape and water circulation pattern in fish tanks using computational fluid dynamics
Providing comfort conditions for fish from the point of view of velocity uniformity and flow regime is one of the most important requirements of aquaculture improving the production conditions. In this research, for this purpose, by using computational fluid dynamics, Fluent software and k-ɛ turbulence model, the geometrical shape and pattern of water circulation in a fish breeding pond have be...
متن کاملDifferential Response of High-Elevation Planktonic Bacterial Community Structure and Metabolism to Experimental Nutrient Enrichment
Nutrient enrichment of high-elevation freshwater ecosystems by atmospheric deposition is increasing worldwide, and bacteria are a key conduit for the metabolism of organic matter in these oligotrophic environments. We conducted two distinct in situ microcosm experiments in a high-elevation lake (Emerald Lake, Sierra Nevada, California, USA) to evaluate responses in bacterioplankton growth, carb...
متن کاملNear-Bottom Hypoxia Impacts Dynamics of Bacterioplankton Assemblage throughout Water Column of the Gulf of Finland (Baltic Sea)
Over the past century the spread of hypoxia in the Baltic Sea has been drastic, reaching its 'arm' into the easternmost sub-basin, the Gulf of Finland. The hydrographic and climatological properties of the gulf offer a broad suite of discrete niches for microbial communities. The current study explores spatiotemporal dynamics of bacterioplankton community in the Gulf of Finland using massively ...
متن کامل